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1. Introduction and results 

1. A Poisson-Lie group (G; /i ) is a Lie group endowed with a Poisson 
structure defined by a two-contravariant antisymmetric tensor /1 on G such 
that multiplication in G is a Poisson morphism [ 11. If { ; } means the Poisson 
bracket of (G;/1) or of (G x G;/i’) [2,5,14], and if 

A:C”(G)-C”(G)6Cm(G) 

means the coproduct of the usual Hopf algebra Coo (G), then (G; /i) is a 
Poisson-Lie group if and only if A is a Poisson morphism: 

A{q; w} = {4;&), P, Y E C”(G). (1) 
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This notion has been considered by Drinfeld following, in particular, work 
by Faddeev and Sklyanin on the formulation of the Inverse Scattering Method, 
by means of classical and quantum Yang-Baxter equations. It is known [ 1 ] 
(see refs. [6,7,22] ) that a simply connected Poisson-Lie group determines 
and is determined by a Lie bialgebra (9; E ), where E is a one-cocycle on g, 
with values on A*(g), relatively to the adjoint representation and such that 
e:g*/lg*-g’ defines a Lie algebra structure on g*. 

An important case of Poisson-Lie groups is when E is exact, i.e., E = 6r, r E 
9 A 9. 

Let a(g) be the enveloping algebra of g and define three elements: 

r’* = r@l, r13 = P23r12P23, r23 = 1 @r Eg@g@g, 

where P2 3 means the permutation (2, 3). We write 

[r;r] E [r ‘2;r13] + [r’2;r23] + [r13;-r23] 

[calculations in a(g) 8 a(g) 8 a(g)]. If (G;/i) is a Poisson-Lie group deter- 
mined by the bialgebra (9; E = Jr) then r satisfies the generalized classical 
Yang-Baxter equation, i.e., 

adx. [r;r] = 0, Vx c g. (2) 

Conversely, if r satisfies (2), (g;e = 6r) is the bialgebra of the simply 
connected Poisson-Lie group (G; /1) . 

Suppose r satisfies (2). Let 

gEG> A’(g) = T,L,.r, A’(g) = T,R,.r 

be left- and right-invariant skew-symmetric two-tensors defined from r by left 
and right translation, respectively. The tensor /i of the corresponding simply 
connected Poisson-Lie group (9; E = 6r) is then 

A = A’ -A’. 

A subcase of the preceding is when r satisfies the classical Yang-Baxter 
equation: 

[r;r] = 0. 

The bialgebra and corresponding Poisson-Lie group are in this case called 
triangular. A’ and A’ separately define invariant Poisson strucures on G (but 
not Poisson-Lie structures!), such that A = A’-A’ is the Poisson-Lie structure 
on G. 

By our understanding of some of Drinfeld’s work, the quantization of a 
triangular Poisson-Lie group could be the starting point for a general theory 
of quantum groups. 
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2. The notion of star product was systematically set out in refs. [ 8,111. 
See refs. [ 12,131 for the theorem of existence of star products on arbitrary 
symplectic manifolds. 

Let (M; /i ) be a Poisson manifold, and let CM (M) [ [h ] ] be the algebra 
of formal power series in h with coefficients in C” (M). A star product is a 
bilinear mapping 

such that 

C‘=(M) xCC”(M) ACW(M)[[h]] 

where Ci is a bidifferential operator on Coo (M), with no constant term on each 
argument, that is, Ci(l;v) = Ci(p;l) = 0, and hence q*l = p, l*y = ry; 

(GD*v)“*x = a)* (w*x), (ii) 

P*v/-w*co 
h = {KY} + o(a,;w;h). (iii) 

A star product is thus an associative deformation [9-l 1 ] of the usual algebra 
of functions in Coo (M) where the two-cochains Ci are bidifferential operators 
as above. The natural setting for the development of star products theory is the 
null-on-the-constants differential Hochschild cohomology. See refs. [ 10, 1 1,131 
for some results on this cohomology which we will need for this work. 

Clearly, a star product is linearly defined on Coo (M) [ [h] 1. 
Topological considerations aside, a Poisson-Lie group (G, /i ) can be said 

to determine and be determined by its usual commutative and non-co- 
commutative Hopf algebra (Coo (G); . ; A ) satisfying ( 1). 

To quantize (G; /i ) we should first endow Coo (G) [ [h ] ] with a non-com- 
mutative, non-co-commutative Hopf algebra structure, where the coproduct A 
is the same as that of CM(G) and the product, *, is a star product. When 
topological considerations are set aside, a quantum group can be defined as 
this Hopf algebra. See refs. [24-261, where in particular deformations of 
C*-algebras are considered. 

3. The problem is thus to get * products on (G; n ) such that the compatibility 
relation 

A(y,*w) =Av*Ay/ (3) 

is satisfied. The star product on the right-hand side is canonically defined on 
PiG) &P(G) E C-‘(G x G). 

In this work we consider the case of a triangular Poisson-Lie group 
(G; /i ) defined by a solution r E /i2 (9) of the classical Yang-Baxter equation 
[r;r] = 0. 



372 C. Moreno and L. Valero / Star products and Lie groups 

Let (G;& ) be the left-invariant Poisson structure on G defined by r, i.e., 
/le = T,L . r. Let *( be a left-invariant star product on G. In particular we 
have 

v*eY-Y*“y, 
h = {p; Y}~ + O(v; y;h). 

As we will see below, *e is defined by an element 

F(x;y) = 1 + eFj(x;y)h’ 
i=l 

in a(g) 8 ‘Z(g) [[h]] such that 

F(x +y;z)F(x;y) = F(x;y + z)F(y;z 
where + means the action of the usual coproduct of 2f (9). 

1, (4) 

This is a form under which Drinfeld considered star products in his theory 
of quantum groups or more specifically in the theory of the Quantum Yang- 
Baxter Equation (QYBE) with no spectral parameter [ 151. 

Let 
Ci(P; WI = (Fi(X;V))p(P 8 u/l 3 

where (Fi (x; y ) )e is the left-invariant bidifferential operator on G, determined 
by Fi(x;y) E S(g) @a(g). Left invariance of *!, or of (Fi(x;y))’ means that 

L,(y, * WI = L,y,*L,y/ > Vg E G 
[but not yet (3)!], where (Lgv)) (g’) = q (g . g’). Right translations define 
similar objects, *‘and /i’ = T,R . Y. There is thus a unique element H(x;x) E 
‘u(g) B%(g) [[h ]] satisfying 

HkY) H(x + Y; z) = H(y; z) HkY + z), 
and such that two-cochains, Ci, in *r are defined by 

(5) 

Ci(P;W) = (ffi(X;Y))‘(V 8 WI- (6) 

In particular, if F(x;y) satisfies (4), F-‘(x;y) satisfies (5) and, by (6), 
defines a right-invariant star product on G. 

On the basis of work by Drinfeld, Takhtajan [23] considers the following 
expression: 

v, :‘Y = (F-‘(x;y))‘(F(x;y))‘(y,~ w). 
We will here prove that g is a (definitely non-invariant) star product on G 
which satisfies (3). 

We remark that, if in (G; /i ) G is abelian, then /i = 0 and v, z cy = a, . v. 
Drinfeld obtains a *‘-product on (G; pi) where /?I is now an invariant sym- 

plectic structure [which suffices to obtain *-products on triangular Poisson-Lie 
groups (G; /i ) or *‘-products on a Poisson group (G; lie ) ] by straightforward 
generalization of one way of getting the usual Moyal *-product on @X2”; fir ). 
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Specifically taking 9 = g x,q, !F! as the central extension of g by the two-cocycle 
PI, Drinfeld defines an integral, containing the Campbell-Hausdorff groups of 
g and 9, on an orbit of the coadjoint representation of the simply connected Lie 
group G. In the case G= R2”, this integral is exactly the integral expression of 
the Moyal *-product in the p and q coordinates [ 3,4]. See ref. [ 161, where the 
authors clarify this construction. See refs. [ 20,2 1 ] for a detailed development. 

Another theorem by Drinfeld can be stated as follows (see refs. [ I5,20 ] ): 
Any *l-product on (G; pi ) is equivalent to one obtained in the foregoing 

construction by considering the central extension of &, = g xbb Iw with a de 
Rham invariant two-cocycle /3,, on G of the form 

Ph = pl + h/32 + ‘** + hk-lj.h, 

where pi, i 1 2, are any invariant cocycles and k is any natural number. 
Again, the notion of equivalent extensions allow us to choose pi, i 2 2, in 
some fixed supplementary space of the space of exact two-cocycles. To prove 
this theorem we require in particular: 

(i) the isomorphism between the cohomology defined by the Schouten 
bracket of (G; /?I ) and the de Rahm cohomology as stated in ref. [ 191; 

(ii) theorem 2 in this article, which states the cohomological meaning of 
the QYBE. 

4. The relation between star products and the QYBE is as follows. Let F (x; y ) 
define a *l-product on G (and hereafter designate this invariant *!-product). 
Define, as Drinfeld does, 

SkyI = F-‘(y;x)F(x;~); (7) 
we then have 

s(x;Y)sb;z)s(Y;z) = s(Y;z)s(x;z)skY), 

S(x;y)S(y;x) = i 3 
that is to say, S (x; y ) satisfies the triangular QYBE on 2l (g) [ [h ] I. 

We prove this theorem by Drinfeld below. See also refs. [ 15- 171. Conversely, 
we here prove the following theorem by Drinfeld (see refs. [ 15,18,17] ): 

Theorem 1. Let r E End (W x R” ) [ [h ] ] satisfv 

R12R2’ = 1. 

Then: 
(i) There is a *!-product F (x; y ) on the Lie group GL( n; [w ) such that, if 

S(x; y) is as in (7), we have 
(P@Pp)S = R, (8) 
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where 
P: gl(n;R) - End(R”) 

is the natural representation of the Lie algebra gl (n; R). 
(ii)Any other *e-product F’(x; y) which satisfies (8) is equivalent to F (x; y). 

That is to say, there is an 

E(x) = 1 +‘f$i~x)hi~WgH[hll, 
i=l 

such that 
F’(x;y) = E-b + y)Fb;y)E(x)E(y). 

Moreover, E (x ) can be chosen so that PE = 1. 

To prove this theorem, we first need to prove theorem 2 below. 
If d means the differential in the invariant Hochschild complex on G, ‘2X(g), 

relation (4) is equivalent to the set of relations 

where 
dF,(x;y;z) = o/(x;y;z), 1 = 1,2,3 ,... , (9) 

ac(x;y; z) = c 1 it F X +Y;Z)Fj(X;Y)-Fi(X;Y+ Z)Fj(Y;Z)I. 
ii-j=! 
i,j> 1 

Suppose now that these relations are satisfied with 1 = 1,2,. . . , k - 1. Then 
Gerstenhaber’s theory [9,11] states that CQ (x; y; z) is a three-cocycle in, the 
foregoing cohomology. But, from a theorem by Vey and Lichnerowicz we have 

ok(x;y;z) = Aak(x;y;z) + d4i(x;y;z), (10) 
where Aak(x; y;z) is the skew-symmetrical part of ak(x; y; z) (which is a 
three-tensor on G), and where Ek(x;y) is a two-cochain. Thus (9) is also 
satisfied with 1 = k if and only if Crk (x; y; z) is exact. With these notations 
(see section 7 below), we prove the following [ 18,201. 

Theorem 2. Let 

F(x;Y) = 1 + eFi(x;y) hi 
i=l 

beanarbitraryelementofa(g)@2l(g)[[h]] andS(x;y) = F-‘(y;x)F(x;y). 
Suppose F (x;y) is a star product to the order k - 1, and hence satisfies (9) 
with 1 = 1,2,... , k - 1. Then in the Vey-Lichnerowicz splitting (lo), we have 

kb;Y;Z) = -~[~(X;Y)~(x;Z)~(Y;Z) -~(y;z)~(x;z)s(x;y)]k, 

where the right-hand side means the coefjicient of hk in the formal series 
defining the bracketed term. 
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Definition 3. We call the relation 

[~(x;Y)~b;z)s(Y;z) -s~Y;z~s~x;z~s~x;y~l~ = 0 (11) 

the QYBE to order k. 

Corollary 4. The star product to order k - 1 in theorem 2 can be extended to 
a star product to order k if and only if the corresponding QYBE to order k is 
satisfied. 

5. We end this Introduction with some words about the originality of our 
contribution. In our knowledge, the proofs given here do not appear in the 
literature, except for the relativily easy theorems 9, 18, see refs. [ 16,231. In our 
understanding, theorem 2 is basic to Drinfeld’s work [ 15 1, but it is not stated 
there and no reference is given to results of the theory of star products or, 
what at this point is the same, to results on invariant, differential, Hochschild 
cohomology on a Lie group. We believe, nevertheless, that this theorem was 
deeply understood by the author of ref. [ 151, when this reference was written. 

6. An important theorem in the theory of star products was proved for the 
first time by M. De Wilde and P. Lecomte in ref. [ 121. It states that on an 
arbitrary symplectic manifold there exists a star product. See ref. [ 13 1, where 
additional results are also obtained. 

2. The triangular quantum Yang-Baxter equation 

1. Let V be a real vector space and R an element in End(V @ V). Let us 
define the following operators: 

R12 E End(V@V@V), RI2 = R@I, 

RI3 E End(V@V@V) > R23 = I@R 3 

RI3 E End(V@V@V), R’3 = ~23~12~23 

The triangular Quantum Yang-Baxter Equation (QYBE) with no spectral 
parameter is by definition the system of equations 

R12R21 = I, R21 = p12R’2@2. (ii) 
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2. Drinfeld’s idea was to look for solutions of (i) and (ii) in the space of 
formal power series in h with coefficients in End(V @ V). If 

R=l+Frih’, ri E End(V@V), 
i=l 

eqs. (i), (ii) are to order h2 and h’, respectively, 
r’ 2r; 3 + r; 2rf 3 + rt 3rf 3 = rf 3rf 3 + rf 3r: 2 + r; ‘rf 2, I (iii) 

that is to say, 
r:2 +rf’ = 0; (iv) 

[ri2;r,‘3] + [rf2;rf3] + [rf3;rF3] = 0, (VI 

(vi) G (iv). (d 
Clearly, these equations have a meaning on any Lie algebra g and not just 

on gl (n; R). If products are considered in the enveloping algebra 9l (g ), and if 
we put Si E g A g in place of rf, we can write 

s;2s;3 +S;2S23+Sf3S23 I I = s23s,‘3 + s23s;2 + s’3s;2 1 1 1 9 (iii’) 

S;2+Sf’ = 0. (iv’) 

Then we look for 

SEa(g)@%(g)[[h]], S=I+gSih’, 
i=l 

such that the QYBE is satified in %(g)a3, 
sl2c$3~23 =s23~13~12 , (i’) 

p2s2* = I. (ii’) 

Equations (i) and (ii) are now obtained by considering some representation 
n : aI(g) - End(V) and by defining R = (x @ a)S. The problem is then 
to solve (i’ ) and (ii’). The theory of invariant star products on a Lie group 
provides that solution. 

3. Invariant differential operators on G 

I. Let T,G be the vector space tangent to G at the unit e of G. If x E T,G, 
then X’ and X’ are vector fields on G generated from x by left and right 
translations, 

Xc(g) = T,L,-x, X’ = T,R,.x, Vg c G; 
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if y E TeG, there is [x; y ] E T’G such that 

I~e;yclk) = Te&. tx;yl, 

[X’; Y’](g) = -T,R, . [x;y] . 

The Lie algebra g of G is the vector space T,G endowed with the bracket [ ; 1. 
Let 23’ (G) be the associative algebra generated by vector fields Xe, x E T,G. 

This is the algebra of left-invariant differential operators on G. In the same 
way, let Vr (G) be the algebra of right-invariant differential operators. Let 

7-(g) = &c% .‘i. 8’9 
k=O 

be the tensor algebra on the vector space g, and ,7 the bilateral ideal generated 
by the relations x 8 y - y 8 x - [x; y 1. The enveloping algebra B(g) is by 
definition the associative algebra ‘u(g) = 7 (9)/J’. The mapping x - X’ 
extends to an algebra isomorphism from ‘?I (g) to ‘De (G). In the same way, if 
!!I (g)O is the opposed algebra to ?.I (g), the mapping x - Xr extends to an 
algebra isomorphism from ‘3 (g )” to Dr (G). Thus if x . y . . . z is a product in 
a(g), we then have 

cx. y.. . z)e = xe . ye.. . ze , 

cx .y...z)r = zr...yr.xr. 

The mapping 
9-9@!29, x-x~l+llxx, 

is linear. It extends in a unique way to a homomorphism of algebras, 

c : a(g) - a(g) @a(g). 

This mapping c is the coproduct of 2I (g ). 

Remark. Let (p, w be two elements in C”(G), and x E g; then 

xe(p*V/) = (cw)ewwL 

X’(p * WI = (c(x))r(p 8 WI. 

It will be convenient to introduce the following usual polynomial notation for 
elements in a(g). If {ei, i = 1,. . . , n} is a basis of g, we will write 

Xj = ei 63 1 8 1 @ * * * 8 1 @ * * * (i = 1,2 ,... ,n), 

whatever the number of 1’s. Thus 

Xi E’ZI(g) @2l(g) 8”. . 
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We will also write 

yj = l@e~c31@~~~@11~~~, -ViEB(g)@~(g)@*“, 

and then 

Zi = 1 8 1 @ f?i 63 1 @ *. . C3 1 @ . . . , 

ti = 1 8 1 @ 1 @ ei 8 1 8 . . .@ 1 63 . . . , 

etc. Elements x commute with elements y, but if i # j, Xi and Xj are in general 
non-commuting. The same is true for y, z, . . . etc. An element A E 2I (g ) 63 ‘11 (g ) 
can then be written as a polynomial in the variables x, y, 

A = Cn(,)(,)ef’...e~~er’...e~ 

We can write 

C(X;) = (ei@l + l@ei)@l@*..=X;+yi, 

so 
c(x;’ . ..xf) = (x1 +yly’*.. (x, +y,p. 

If P(x) E a(g), we consequently have c(P(x)) = P(x + y). 

2. Let A be an element in a(g), and A! E Doe(G), A’ E W(G), the cor- 
responding invariant differential operators. The invariance properties are ex- 
pressed as 

(A’f 10 L,, = A’ (f 0 L,, 1, Wf 10 R,, = A’(f 0 R,, 1, 

Vgl E G, f E C”(G). 

In a more convenient notation, we will write 

A’k~~gLfkrgz) = A’kdfk,~gd, 

ArkI -g2)f(gl -a) = A’(gl)fkl -a). 

Lemma 5.Let XI,... x,, be elements in g. Then 

(XI . . -xn)‘(gl) (foR,)(g,) = (x~..-xn)~(&) (foLg,)(gd- 

d 
=Tiil 

, .exptixi -expt2x2.- .expt,x, .g2)11,=...=1,=0 

= xi(g2) --xf(gdf(g1 *g2) = (X,-.-&IYk2)f(gl -g2). cl 
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Let 

B&y) = 2BAx;y)hi, Boky) = 1, 
i=l 

be an element of 2l (g) 8 2l (g) [ [h ] ] and Bf , Bf the corresponding invariant 
bidifferential operators. We will write 

Bf(g;g) = FB;(g;g)h’, B’(g;g) = FB;(g;g)h’. 
i=O i=O 

We write the inverse of the formal power series B (x; y ) as 

(B-‘)(x;y) = g&(x;y)h’, 
i=O 

consequently 

(B-‘)‘(g;g) = e&(g;g)h’. 
i=O 

Lemma 6. With notations as above and q, y E Cm (G), we have 

W-‘)‘oB’)tg~ .gz;gl -g2) (p&l .g2) 8 vv(gl .g2)) 

= tB-‘)‘tgl;g,)(Be)tg2;g2) (u,tgl-g2)@‘i’tgl-gz))- 

Proof: The left-hand member is equal to 

tB-‘)‘tg,.g2;g~.gz).Bftg,.g2;gl.gz)(~(g~.g2)~~tg~.g2)) 

= (B-’ Ytg, . gz; gl . g2) . (Be (u, 8 v/l 1 (sl . g2; gl . a) 

= (B-‘)‘(g,;g,).(B’((p~yl))(gl-gz;gl.gz) 

= tB-‘)‘(g,;g,).Bftg2;g2) (vtgl-gz)@vtgl-&)), 

where only the invariance properties of (B-l )’ and Be have been used. Cl 

Lemma 7. With notations as above, we have 

W’ I’&; gl) . (B’ 1 (a; gl) 

.tB-‘)‘tg2;g2).Bf(gz;gz)t~tg~.g2)~’V/(g~.g~)) 
= W-‘)‘bxgd. tB’)kz;gd tptsl -g2) @ v/b ‘g2)). 



380 C. Moreno and L. Valero / Star products and Lie groups 

Proof: Let x be an element in C” (G x G). We have 

B%l;gd. (B-‘Ytgzm) .xkl .gz;gl -a) 

= Betma) (B-‘)etgl;g,)x(g,.gz;gl.g2) 

= (BoB-‘)~ tgl;gl) =xkl.g2;gl.gz), 
where lemma 5 has been used. 0 

From the latter two lemmae, we obtain 

Lemma 8. With notations as above 

t(B-‘)‘oBe)tg,.g2;g~.g2)(~O(gl.gz)~~tgl.gz)) (12) 

= W-‘YoB’)tg,;gd. W-‘FB’)kz;gz) tqtgl -gz) @ wkl -gz)). 

We can write this result in terms of the coproduct 

d:C”(G)-C”(G)6CCM(G), p-dy,, 

dp(g1;g2) = Qkl*gz). 

We have thus obtained 

Theorem 9. With notations as above, we have 

d[((B-‘)‘oB’) (a,@~)] = ((B-‘)‘oB’) (AY,c~~Y/), (13) 

where the right-hand side is, by definition, the right-hand side in lemma 8. 

We will apply this theorem in the next section. When B E F is a star 
product the theorem will prove the fundamental property (3). 

4. The invariant differential Hochschild cohomology 

I. Let M be a C” manifold. The Hochschild cohomology is defined as 
follows: 

Definition 10. A p-cochain is a p-linear map 

C:P(M)x.f.xP(M) -C”(M), 

(I;;... ;f,) - ctfl;... ;f,L 
defined by a differential operator on each argument with no constant term. 
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Let Cp E Cp (C” (M) ) be the vector space of these cochains. 

Definition 11. The cohomology operator is defined by 

d:CP -CP+’ , C-dC, 

where 

dCUi;I;;... ;f,) = h~cul;... ;f,) 

+ g-l)‘C(fo;fi;... if;:-* .A;h+1;... ;f,) 
i=l 

+ (-l)P+‘c(&;... ;f,-1). fp. 

We then have d o d = 0. 
Let HP(P(M)) E HP(P (M);C”(M)) be the pth space in this cohomol- 

ogy. We now have the following theorem: 

Theorem 12 (J. Vey). The space HP(F)(M)) is isomorphic to the space of 
contravariant skew-symmetric p-tensors A,(M) on M. This isomorphism is 
given by the splitting 

a=Aa+dE, acCP, da=O, EEC~-‘, 

where A is the operator of complete skew symmetrization. In particular, the 
skew-symmetrized part of a p-cocycle is a contravariant (skew-symmetric) p- 
tensor. 

2. Now let M be a Lie group G. The (left- or right-) invariant Hochschild 
cohomology is defined as before, with the additional condition that the multi- 
differential operators C on G are (left or right) invariant. We can thus define 
the following cohomology, which by left or right translations is isomorphic to 
the left- or right-invariant Hochschild cohomology. 

(i) The p-cochains are the elements of 

a(g) 63--.c%2l(g). 

(ii) The cohomology operator is 

d : 2l(g)@p - 91(g)@(p+1), 

d(u, @ s.0 c3up) = lc3U,c3..*@Uu, 
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Hence do d = 0. 
We now have the following 

Theorem 13 (A. Lichnerowicz). Let p = 2,3. The pth space of the invariant 
Hochschild cohomology on G is isomorphic to the space of invariant skew- 
symmetric p-tensors on G. This isomorphism is given by the splitting 

cr=Aa+dE, 

where a! is an invariant p-cocycle, and where E is some invariant (p- 1 )-cochain. 

Concerning the isomorphism in this theorem, see also ref. [ 271, pp. 5-15 to 
5-18. 

5. Star products on G 

I. 

Definition 14.A (left- or right-) invariant star product on G is a bilinear 
mapping on P(G) [ [h] ] with values in this space defined in the following 
way: 

6) If p, w E Cm(G), 

P*W = FCi(q;W)h’, co = I, 
i=l 

* is linearly defined on Coo (G) [ [h ] 1. 
(ii) Ci is an invariant bidifferential operator on G such that 

Ci(a;l) = Ci(l;p) = 0 , VY, EC”(G). 
(iii) 

(p*‘y)*x =a,*cw*x,. 

If Ci is left invariant, there is a unique Fi E a(g) 8 a(g) such that 

Ci(P; WI = (Fi(x;Y)le (P 8 ~1. 

Similary if Ci is right invariant. 
We then have 

(G~*w)*x = eC,(P*Y;X)h'= 2 C Cj(Ci(P;W);X) 
j=l m=O ( i+j=m 

PO* (w*x) = 5 C 
m=O i+j=m 
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If (iii) is satisfied, we must have (Vm = 1,2,3,. . . ) 

C Cj(Ci(P;VV);X) = C Cj(~;Ci(W;X))- 
i+j=m i+ j=m 

But 
Ci((P; u/J = (Fi(X;.Y))‘(P 8 W) - 

Relation ( 14) is then equivalent to 

C (Fj(X + V;z)~i;;:(X;Y))’ (Cp 8 W@X) 
i+j=m 

(14) 

= C (Fj(X;Y + Z)Fi(X;Y))’ (Co @ W 82) 3 
i+j=m 

and the following equality ensues: 

C Fj(X +Y;Z)Fi(X;Y) = C F’(X;y+ Z)Fi(y;Z) (m = 1,2,3,...). 
i+j=m i+j=m 

Proposition 15. There is a bijective map between left-invariant star products on 
G and the elements 

F(x;Y) = 1 +24(x;y)h’ E~I(g)B~8(g)[[hll 
i=l 

satisfiing relations (4): 

F(x +y;z)F(x;y) = Fky + z)F(y;z). 

In brief, F (x; y ) is then a left-invariant star product on G. 

2. If, in definition 14, the star product is right invariant, Ci determines a 
unique element Hi (x; y) E ‘3(g) @ ‘8 (g) such that 

Ci(p; v/l = (Hi(X;Y))’ (P @ u/l- 

Similarly, we prove 

Proposition 16. There is a bijective map between right-invariant star products 
on G and the elements 

H(x;Y) = 1 + gfi(x;y)h’ E~I(g)Q~(g)[[hll 
i=l 

satisfying the relations 

H(x;y) H(x -I- y; z) = H(Y; z) Hky + z) . (15) 
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Proposition 17. Let F (x; y ) be a left-invariant star product on G. Let H (x; y ) = 
F-’ (x; y). Then H(x; y) is a right-invariant star product on G. 

ProoJ Let us take inverses in relation (4). Then refer to ( 15 ). Note that 
F-’ (x + y; z) = (F(x + y;z))-‘. Cl 

Define, as Takhtajan [23] does, 

p :: y = (F-‘b;yW’(x;y)‘) ((P 8 WI. 
We then have 

(pbGx 

(16) 

= [F-‘(~;Y)‘F(~;~)‘~[(F-‘(~;Y)‘F(~;Y)’ (~8 w)) 8x1 

= (F-‘(x+y;z)‘F(x+y;z)‘F-‘(~;~)‘F(x;Y)’)(vIwzu) 

= (F-‘(x + y;z)‘F-‘(x;y)‘F(x + y;z)’ F(x;Y)~)) (cp@ wax) 

= (F-‘(x;y)F-‘(x+y;z))‘(F(x+y;z)F(~;y)~ (q@~v/xx) 

= (F-‘(y;z)F-‘(x;y+z))‘(F(x;~+z)F(~;z))~(~~~~) 

= (F-‘(x;y + z)‘F(x;y + z)‘F-‘(y;z)‘F(y;z)’ ((P@‘@~) 

= [~-‘~x;~~‘~~x;y~~l[~~ W’(x;yYF-‘(KY) (u/@x))l 

3. Now, in lemma 8, let B be a star product F. Then the right-hand side of 
the equality in the lemma is dp g A y/ . Hence, in this case, theorem 9 reads 

A(y, :: y) = Aa, *” Ay/. 

We have thus proved 

Theorem 18. Let F (x; y ) be a left-invariant star product on G. Then F-’ (x; y ) 
is a right-invariant star product on G and 

bob= (F-‘(x;y)‘F(x;~)~)(~~yy/), P,YEC=‘(G), 

is a star product on G. The coproduct 

A:C”(G)-C”(G)~CCOO(G)~C”(GxG) 

is a morphism of the non-commutative algebra (Coo (G) [ [h] ] , z) to the non- 
commutative algebra (CM(G) 63 Cm(G) [ [h]] ; z). 
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Remark. Theorem 9 is true without reference to star products. This remark 
will prove very important when one extends this work to the quantization of 
quasi-triangular Poisson-Lie groups. 

6. Invariant star products on G and the quantum Yang-Baxter equation 

1. Let F (x; y ) be a left-invariant star product. Drinfeld considers the series 
[151 

S(X;Y) = F-‘(Y;x) F(x;Y) 
and states the following theorem, which we will prove below. (Also see ref. 
L161.1 

Theorem 19. The element S(x; y ) satisfies the QYBE (i’), (ii”‘). 

ProoJ By hypothesis, we have 
F(x + y;z)F(x;y) = F(x;y f z)F(y;z). (17) 

We first remark that a similar relation holds for any permutation of (x, y, z). 
Clearly we have 

F(x + y;z) F(y;x)S(x;y) = F(x;y + z) F(z;y)S(y;z). 

And from the above remark 
F(y;x + z) F(x;z)S(x;y) = F(x + KY) F(x;z)S(y;z). 

Again 
F(y;x + z)F(z;x)S(x;z)S(x;y) = F(x + z;y)F(~;x)S(xz)S(y;z), 

and in the same way 
F(y + z;x)F(y;z)S(x;z)S(x;y) = F(z;x +~~)F(x;y)S(x;z)S(y;z). 

Then 

F(z + y;x)F(z;y)S(y;z)S(x;z)S(x;Y) 

= F(z;y +x)F(y;x)S(x;y)S(x;z)S(y;z). 

By using ( 17) again, we obtain relation (i’ ). Cl 

7. The cohomological interpretation of the quantum Yang-Baxter equation 

I. Let F (x; y) be an invariant star product as in proposition 15. Relation 
(17) is equivalent to the set of relations (m = 1,2,3,. . . ) 

Fm(x + Y;Z) + F,,(x;Y) - F,,,(x;Y + z) -F,,,(Y;z) = -a,n(x;y;z), 
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where 

a,n(X;y;Z) = C [Fi(X+y;Z)~j(X;Y)-~;;:(X;Y+Z)~j(Y;Z)l. 
i+j=m 

iJ>l 

In terms of the complex (72l (g ); d), these relations are 

dF,(x;y;z) = a,,j(x;y;z) (m = 1,2,3 ,... ). 

Definition 20.Let F (x;y) be now an arbitrary element in 21(g)@2[ [h]], 

F(x;~) = 1 + CFi(x;y)hj. (18) 
i=l 

It defines an invariant star product to order (m - 1) if 

dFj(X;y;Z) = (Yi(X;y;Z) (i = 1,2,... ,m- 1). 

Theorem 21 (Gerstenhaber). If (18) defines a star product to order (m - I ), 
am (x; y; z) is a three-cocycle. This star product can be extended to order m if 
and only if this cocycle is exact. 

If we now refer to theorem 13, we have 

Corollary 22. If (18) defines a star product to order (m - 1 ), this star product 
extends to order m if and only if Act, (x; y; z) = 0. 

2. Proof of theorem 2 and corollary 4. Let 

F(X;J’) = 1 + 2 Fi(x;y) hi 
i=l 

be an arbitrary element of a(g) 8 2l (g) [ [h] 1. We consider the following 
expressions: 

xb;Y;z) = ~b;Y)~(x;z)~(Y;z) -S(Y;z)S(x;z)~b;Y), 

y(x;y;z) = F(x + y;z)F(x;y) -F(x;Y + ~)F(Y;z), (i) 

F(x + y;z) F&y) = Y(x;Y;z) + F(x;Y + ~)F(Y;z), 

F(x;y + z)F(y;z) = F(x +y;z)F(x;y)-Y(x;Y;z). 

From (i) we obtain 

(ii) 

(iii) 

Y(x;y;z) = F(x + y;z)F(y;x)S(x;y) -F(x;Y + z)F(z;y)S(y;z), 
(iv) 
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and from (ii) and (iii) we obtain 

F(x +JJ;z)F(y;x) = Y(y;x;z) +F(y;x + z)F(x;z), (ii’) 

F(x;y + z)F(z;y) = F(x + z;y)F(x;z) -X(x;z;y). (iii’) 
Given (ii’) and (iii’), (iv) becomes 

Y(x;y;z) =Y(y;x;z)S(x;y) + Y(x;z;y)S(y;z) 

+ F(y;x + z)F(x;z)S(x;y) -J-(x + z;y)F(x;z)S(Y;z). 
(v) 

If we now define 

mx;y; zi = Y(y;x;z)SLK;y) + Y(x;z;Y)s(Y;z), 
equality (v) becomes 

Y(x;y;z) =M(x;y;z) + F(y;x + z)F(z;x)S(x;z)SkY) 

-F(x + z;y)F(z;x)S(x;z)S(y;z). 
But from (ii) and (iii), 

(vi) 

F(z + x;y)F(z;x) =Y(z;x;y) + f-(-TX + Y)FkY), (ii” ) 

F(y;z + x)F(z;x) =F(y + z;x)F(y;z) - Y(y;z;x), 

and from (vi), 
(iii” ) 

Y (x;y; z) =M(x;y; z) - N(x;y; z) + P(x;Y; z) - Q(x;Y; z) , 
(vii) 

where 

N(x;y;z) = Y (y; z;x) Sk z) Sky) + Y(z;x;y) S(x; z) sty; z) , 

P(x;y;z) = F(y + z;x)F(z;y)S(y;z)S(x;z)S(x;y), 

Q(x;Y;z) = f-(z;x +~)F(y;x)S(x;y)S(x;z)S(y;z). 
By separately considering the terms of the formal power series in the identity 
(vii), we see that 

- There is no term in ho. 
- Theterminh’is 

Yl (KY; z) = Ml ky; z) - N (KY; z) 

+ 4 (Y -I- z;x) + Fl (.cY) + Sl (y;z) + Sl (x;z) + Sl (x;y) 

-F,(z;x +y) -FlbYX) -~1b;Y)-S,(x;z) -&(y;z). 
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That is to say, 

Y,b;y;z) = ~l(x;Y;z)-~l(x;Y;z) 

+ 4 (Y + z;x) - 4 (z;x + y) + FI (z;y) - FI (y;x). 
But 

~1(x;y;z) = Y,(y;x;z) + Y,(x;z;y), 

W(x;y;z) = ~,bJ;z;x) + yl(z;x;Y), 

Y,(z;y;x) = F~(~+~;~)+F,(~;Y)-FI(~;~+Y)-FI(Y;~); 

thus, we obtain 

Y1Lw;z) - Y,(y;x;z) - Y,(x;z;y) 

+ Y1(y;z;x) + Y1(z;x;y) - Y1(z;y;x) = 0. 
That is to say, 

AY,(x;y;z) = 0. 
Thus, the above relation is satisfied for any F (x; y ). This is an interesting 
triviality. In fact, from the definition of Y (x; y; z), we have 

YI(x;Y;z) = FI(x;Y;z) + FI(x;Y) -FI(x;Y + z) -FI(Y;z) 

= dF,(x;y;z). 

Y, (x; y; z) is then an exact cocycle; AY, (x; y; z ) = 0 must be satisfied ac- 
cording to theorems 12, 13. 

- The term in h* is 

y2(x;y;z) = M~(x;Y;z) -N~(x;Y;z) + P~(x;Y;z) -Q~(x;Y;z), 

where 

P~(x;Y;z) = [F(Y + z;x)F(z;y)S(y;z)S(x;z)S(x;y)l2, 

Q~(x;Y: z) = [F(z;y + x)F(Y;~)S(~;Y)S(~;~)S(Y;~)I~. 

Then 

~*b;Y;z) = yl(Y;x;z)sl(x;Y) 

+ r,(y;x;z) + ylb;Y;z)slkz) + Y*kz;y), 

N*(x;Y;z) = r,(y;z;x) + Y,(y;z;x) [S,(x;z) +S,(x;y)] 

+ r,(z;x;y) + Y1(z;x;y) [S1(x;z) +S,(y;z)], 
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P2(x;y;z) = [F(z +Y;x)F(z;Y)l2 + ~~~Y;~~s~x;~~s~x;v~l2 

+ [F(z + Y;x)FkY)ll. ~~~Y;~~s~x;~~s~~;Y~lI, 

Qz(x;~z) = [F( z;x +Y)F(Y;Z)l2 + [s(x;Y)~(x;z)~(Y;z)l2 

+ [Fkx + Y)F(Y;x)ll * ~~~~;Y~s~x;~~s~Y;~~ll~ 

And hence 

Y,(x;lJ;z) = yl(Y;x;z)~lb;Y) + Y,(y;x;z) 

+ ylkz;Y)~l(Y;z) + Y,(x;z;y) 

-Y,(Y;z;x) [SlkZ) +slkY)l 

- Yl (z;x;y) ISI (x; z) + s, (x;y)l 

- Y,(y;z,x) - Yz(z;x;y) + Y,(z;v;x) 

+ ~l~~;Y;~~~~~Y;~~~~~;~~~~~;Y~ll -~,ky;z). 

But if now we suppose F (x; y ) to be a star product to order 1, definition 20, 
we have 

Yl Lw; z) = -dF, (x;y;z) = 0, 
and so, by this hypothesis, 

Y,(x;y;z) - y2kx;z) - r,(x;z;JJ) 

+ r,(y;z;x) + Y2(z;x;y) + Y,(z;y;x) = --x2(x;y;z). 
That is to say, 

6AY2k~;z) = -[S(x;y)S(x;z)S(y;z) -S(~;Z)S(X;Z)S(X;~)]~ 

= -[S,;&]. 

But 

r,(x;y;z) = F2(x+y;z) +F~(x;Y)-Fz(x;Y+z)-F~(Y;z) 

and hence 
+ [F(x +y;z)F(x;y) -J’(x;Y + z)J’(y;z)l~, 

Y2(x;y;z) = -dF2(x;y;z) + cw2(x;y;z). 
From this we obtain 

~Ac~~(x;JJ;z) = -[s(X;y)s(X;Z)8(y;Z) -S(~;Z)S(X;Z)S(X;~)]~. 

We can then assert 
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A star product to order I (i.e., dF, (x;Y;z) = Y, (x;Y;z) = 0) can be ex- 
tended to order 2 (i.e., 3F2 1 dFz(x;y;z) = a2(x;y;z)) if and only if the 
classical Yang-Baxter equation [SI; SI ] = 0 (SI (x; y ) = FI (x; y ) - FI (y; xl ) 
is satisfied (i.e., the QYBE is satisfied to order 2, X,(x; y; z) = 0 1. 

This result can be generalized by induction to any order. 
- The term in hk, for any k, is 

Y/cky;z) = Mk(x;y;z)-Nk(x;y;z) +Pk(x;y;z)-Qk(x;y;z). 
But 

Mk(x;Y;z) = Yk(Y;X;Z) + C &((y;X;Z)Sj(X;Y) 
i+j=k 

+ yk(x;z;Y) + C K(X;Z;Y)sj(Y;Z) (J’ > 0). 
i+j=k 

If we now suppose that the QYBE is satisfied to order k [that is, if F (x; y ) 
is a star product to order (k - 1) 1, we have 

l$(x;y;z) = 0 (i = 1,2 ,... ,k- l), 
and thus 

Mk(x;y;z) = yk(y;x;z) + yk(x;z;y) , 

Nk(x;Y;z) = yk(Y;z;x) + yk(z;x;Y) . 

On the other hand, 

pkb;Y;z) - Qk(X;Y;Z) 

= [F(Y + z;x)F(z;y) -F(z;x +Y)F(Y;X)lk 

+ i+Fk[f’(Y + z;x)F(x;Y)li [S(Y;z)S(x;Z)S(x;Y)Ij 

- C [F(z;X +~)F(y;x)li [S(x;Y)S(x;Z)S(Y;Z)Ij 
i+j=k 

= yk(z;Y;x) -xk(x;Y;z) 

- C [F(Z;Y + z)F(Y;x)liXj(X;Y;z) - 
i+j=k 

21 

From this we obtain 

yk(x;Y;z) = yk(y;x;z) + yk(x;z;Y) 

- yk(Y;z;x) - yk(z;x;Y) + yk(z;Y;x) -xk(x;Y;z). 
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That is to say, 

But 
6AYk (X;y; 2) = -x, (x;y; z) . 

hence 
Yk (x;y; z) = -dFk (x;y; z) + ak (x;y; z) ; 

6Aaktx;y;z) = -&(x;y;z). 

Consequently, a star product F (x; y ) to order (k - 1) can be extended to a star 
product to order k if and only if the QYBE is satisfied to order k. 

If we refer to theorem 13, the proof of theorem 2 and corollary 4 is complete.0 

8. A converse of the foregoing theorem 

In this section we prove part 1 of theorem 1. That is to say, 

Theorem 23. Let R E End&P 8 W ) [ [h] ] be such that the equations 
R’2R’3~23 =R23RI3RI2 , (9 

R12R2’ =I > (ii) 

are satisfied. Then there is a star product F (x; y ) on the group GL( n; 02) such 
that ifS(x;y) = F-’ (y;x) F(x;y) we have 

(P@P)S(x;y) = R, 
where 

P: gt(n;aB) --) End(W) 

is the natural representation of the Lie algebra gl(n;[W). 

First two lemmae. 

Lemma 24. Let 
F= l+gFihi 

i=l 

be an element of2l(g) @a(g) [[h]]. We write 

F-’ = 1 + FEih’, S(X;Y) = F-‘(y;x)F(x;y) 
i=l 

Then 

&kY) = 1, &x;Y) = -FI(x;Y), (1) 
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&(XY) = -Fr(x;y) - c r;;(x;y)Fdx;y), I+k=r 
/>l;k>l 

(2) 

Sl (x;y) = 4 (x;y) - Fl (y;x), (3) 

Sr(x;y) =F,kY) - F,(y;x) (4) 

+ C pi((Y;X) (Fj( x;y)-Fj(y;x)) (r = 2,3,...). 
i+j=r 

il l ; j>l 

We rewrite (4) as 

Sr(x;y) = Fr(x;y) -F,(y;x) +&vi,... ,F,-l)(-cY). (5) 

Proof By straightforward calculations on 

F-1 (x;y) F(x;y) = 1) S(x;y) = F-‘(y;x) F(x;y). q 

Remark. For our purpose it is important to remark that R, depends only on 
F,,... , F,-1, because 8’i depends only on F, with 1 5 1 5 i. 

Lemma 25. Let F and F’ be any two elements in X(g) 8 ‘8(g) [ [h]].Then 
(i)forr = 1,2,3 ,..., 

S:(X;Y) -S,(X;Y) = [F:(x;Y) -F,(x;~)l - E’(w) -F,kx)l 

+ MF;,... ,F;J(x;Y)-MFI ,..., F,)(x;Y); 
(ii) if 

Fi(X;y) = F/(x;JJ), i = I ,... ,r- I, 
then S:(x;y) - S,(x;y) is skew symmetric, and in the case g E gl(n;[W), 

(P@PP)[S~(x;y) -S,(x;y)l Egl(n;R)c39l(n;R) 

is a Hochschild two-cocycle on the group GL( n; [w ). 

Proof: By a straightforward calculation from (5 ) in lemma 24. cl 

Proof of theorem 23. Let F (x; y ) be the element to be found. In ?X (gI (n; R) ) 
we must have 

S:2S:3 +S:2S:3 +S:3Sf3-S{3S~2-Sf3S~2-S~3S:3 = 0, (a) 

p+p =o I 1 ) (b) 

where 

S:*=Ss~(x;y) = Fl(x;y) - F,(y;x) ~gI(n;[W)@gl(n;[W). 
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If we choose S: 2 = YI , we obtain from (i) 

[s:2;s:31 + [sf’;s:‘] + [s;3;s;3] = 0, 

where the brackets are calculated in gI( n; [w) E End(!V). But this expression 
can be written as in (a). Clearly, (b) is satisfied. Thus Si (x;y) = rl is 
skew symmetric, and therefore a Hochschild two-cocycle. We can then define 
FI(x;Y) as 

FlkY) = &(x;y) = ;r,. 
Fi (x; y) is determined in this way by the R given in the theorem. 

We now proceed by induction. The hypothesis is as follows. Let 
k-l 

F(X;y) = 1 + CFi(Xiy)h’ 
i=l 

be a star product to order (k - 1 ), and define 

S(x;y) = F-‘(y;x) F(x;y). 

We assume that the QYBE is satisfied to order k, eq. ( 11)) and also that 

(P@P)Si(x;y) = ri (i = 1,2 ,... ,k- I), 

where ri is given in the hypothesis of the theorem. We must prove that there 
is an Fk(x;y) such that 

T(x;y) = 1 +Slb;y)h+‘.. +&-,(x;y)hk-’ +&(X;y)hk 

satisfies the QYBE to order (k + 1). Of course S(x; y ) and T (x; y ) coincide 
to order (k - 1). In fact, the equation 

dF/ckY;z) = @k(x;Y;z) 

has solutions, because Ask (x; y; z) is the QYBE to order k, which is satisfied 
by hypothesis. If we now take any solution F;k (x; y ) of this equation, any 
other solution will have the form 

where Pk E gl (n; R) @ gI (n; R) is any skew-symmetric Hochschild two-cocycle, 
and Ek is any one-cochain. From lemma 25 

Sk -Sk = 2Pk; 

hence 
(P@P)(&-Sk) = 2/.?k = Sk-&. 

From s(x;y)s(y;x) = 1 we obtain 

sk(x;y) -k sk(y;x) i- c si(X;Y)sjb’;X) = 0; 
i+j=k 

i,j>O 
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on the other hand. 

i+jck 
i,j>O 

hence, by induction hypothesis, we obtain 

(p@pP) (&(X;Y) + &(y;x)) = f-i2 + r;‘, 
which we can write as 

rL2 - (P@PP)??k(x;y) = -[ri’ - (P@P)sk(y;x)]. 

Then ri2- (P@P)sk(x;y) is in gI(n;R)@2 and is skew symmetric. It is then 
a Hochschild two-cocycle. We take Pk as the value 

2Pk = rL2- (p@pP)&(x;y). 
We now consider the solution Fk, where we set Ek = 0, 

Fk(X;J’) = f;;,(x;y) + $(rL’- (p@pP)sk(x;y)). 
From this we obtain 

sk(x;y) = sk(x;y) + (rL’- (P@JPP)~k(x;y)), 

where, clearly, 

On the other hand, 
(P@P)&(x;y) = r12. 

k+l(X;J’;z) = -~[s(X;Y)5(X;Z)s(Y;Z) -~(y;z)s(x;z)~(x;y)]k;, 
is a Hochschild three-cocycle (theorems 2, 13). Then 

Aak+l(X;Y;z) = (P@pPpP)Af%+I(X;J’;Z) 

= -#p2R’3R23 - R23R’3R’2)k+, = 0. 

The proof of the theorem is now complete. 0 

To prove part (2) of theorem 1, we need some basic facts about the 
equivalence of star products and a few preliminary properties. 

9. Equivalence of invariant star products on G 

I. 

Definition 26. Let 

F(x;y) = 1 + gFi(x;y)hi, 
i=l 
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F'ky) = 1 + FFj(x;y)h', 
j=l 

be any two elements in II(g) @ 9l(g) [ [h] 1. We will say they are equivalent if 
there is some element 

E = 1 + eEih’E’U(g)[(h]] (19) 
i=l 

such that 
E(x + Y) J”(x;Y) = Fky) E(x) E(Y). 

Expanding the latter expression, we obtain 

Proposition 27. Elements F (x; y) and F/(x; y ) are equivalent if and on/y if 

F;(x;Y) -Fk(x;y) + Gk(x;y) = d&(x;y) (k = 1,2,3,...), 

GI(-GY) = 0, (20) 

where 

&b&Y) =Gk(E I,... ,Ek-,;F; ,... ,F,‘-,;Fl ,... ,&,)(X;y) 

E C [ it E x + y) Fj(X;y) -Fi(X;y) Ej(y) -Fi(Ky)Ej(X)] (21) 
i+j=k 

- C Ej(x)Ej(y)- C fi(x;Y)Ej(x)E/(Y) (i,j,ll 1). 
i+j=k i+j+l=k 

We should remark that Gk (x; y ) is defmed by means Of Ej, Fj, Fi with 1 < j 5 
k- 1. 

Definition 28. Let F, F’ be two given elements in cU(g)e2 [ [h] 1, and suppose 
there are El,. . . , E, E a(g) such that (20) is satisfied with k = 1,2,. . . , m. 
We will then say that F and F’ are equivalent to order m. 

Proposition 29. Suppose now that F (x; y ) is an invariant star product. Let 

E= 1 +eEih’ (22) 
i=l 

be an arbitrary element in U(g) [ [h] 1. Define F’ (x; y ) by the relation 

F’(x;y) = E-‘(x + y) F(x;y) E(x) E(y). 

Then F/(x; y) is an invariant star product. 
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Proof. We have 

F’(x+y;z) =E-‘(X+y+z)F(X+y;z)E(x+Y)E(z), 

F’(x + y; z) F’kY) 

= E-*(x +y + z)F(x +Y;z)F(X;Y)E(X)E(Y)E(z). 

In the same way, we obtain 

F’(x;y + z) F’(y; z) 

= E-‘(x + y + z) F(x;y + z) Fly; z) E(x) E(Y) E(z), 

but F(x;y) satisfies (4), and hence F’(x;y) as well. Cl 

In view of this proposition the notion of equivalence of star products 
becomes meaningful. 

Definition 30. (i) Two star products F and F’ are equivalent if they are 
equivalent elements in the sense of definition 26. 

(ii) They are equivalent to order m, if F and F’ are equivalent elements to 
order m in the sense of definition 28. 

2. Let F and F’ be two star products. Suppose they are equivalent to order 
k, that is to say (i = l,... ,k) 

F/efi + Gi(El,... ,Ei-IiF/,... ,F/-IiF,,... ,I;;-,) = dEi. 

We know from refs. [ 9,111 that the two-cochain 

F’ k+l -Fk+l + Gk+,(Ei ,... ,&;F,‘,... ,F,‘;F I,... ,Fk) 

is a two-cocycle. 
From theorems 12, 13, there are hk+, E A2 (g) and Ek+, E ?I (g) such that 

F’ k+l -Fk+, + Gk+,(E I,... &;F,‘,... ,Fk’;F ,,... ,Fk) 

= h+l + dEk+l. (23) 

We have 

Proposition 31. Two invariant star products F and F’ which are equivalent to 
order k are equivalent to order k + 1 if and only if hk+ I = 0 in expression (23). 
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10. A few preliminary lemmae 

Lemma 32. Let F and F be two elements in a(g) @ 2f(g) [[h]] such that 

E(x + Y)%x;Y) = Fky) E(x) E(y), 
where E is as in (22). Define 

Sky) = F-‘(Y;x) F(x;y), Sky 1 = F’(y;x)F(x;y). 

We then have 
(i) 

%x;Y) = E-‘(x)E-‘(y)S(x;y)E(x)E(y), 

E-‘(x) = 1 +2&h’ (EE-’ = E-‘E = 1); 
i=l 

(ii) for r = 1,2,3, . . . , 

%q4 = kd +&(Y) + Srky) + Er(x) + G(Y) 

+ c ~i(x;Y)~j(X;Y)Sk(x;Y)E,(X)Es(Y); 
i+j+k+l+s=r 

i,i,k,l,s#r 

(iii) we will write the expression in (ii) as 

3, = Sr + B,(E ,,... ,E,-,;S ,,... ,S,-,;g ,,... ,I$-,,. 

Proof: We obtain these expressions by straightforward calculations from the 
definitions. In (iii), we have used 

&+E,=- c &Ek (l>l,k>l). 
I+k=r 

0 

Remark. Note that the term B,(... ) in (iii) is a sum of products of Ei and 
Si ( 1 5 i 5 r - 1). In each one of these products, there is at least one Ei 
(l<isr-l),buttheyneednotcontainanSi (llilr-1). 

Lemma 33. Let F, F’ be as in lemma 25(i). We assume they are equivalent to 
orderk. Then (r = 1,2,3 ,... ,k) 

S;(X;Y) -S,(X;Y) = -[G,(x;Y) - G,(y;x)l 

+ MF,‘,... ,F;-,Hx;Y)-%(FI ,... ,F,-I)(x;Y) (24) 

(RI = GI = 0 + S; = S1). 
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Proof From definition 28, we obtain 

F/-Fi = Gi +dEi (i = l,... ,k). 

If we now refer to the expression in lemma 25 (i), we obtain eq. (24). Recall 
that Gi (a . . ) is defined by expression (2 1). 0 

Lemma 34. Let F and F’ be two star products which are equivalent to order k. 
That is to say, we have 

F/mFi + Gi = dEi (i = l,... ,k- l), (a) 

Fk)+1 -&+I + G/c+1 = hk+l + W+l, 

where hk+, E A2 (9) . Then 

~;C+,(X;Y)-&+Ax;Y) = 2h+l(x;y) +Ak+,(...)(x;y), 

where 

(b) 

Ak+l(Fl,... ,Fk;F,’ ,... ,Fi;E1 ,... ,Ek)(x;y) 

= -[Gk+l(...)(X;y)-Gk+l(...)(y;X) 

+&+l(F;,... ,F~‘)(x;Y) -&+l(Fl,... ,Fk)(X;Y). 

Proof: We substitute (a) and (b) in (24), and we write r = k + 1 in lemma 
25(i). .o 

Lemma 35. Let F and F’ be two star products which are equivalent to order k. 
Let the element 

E = 1 +.Elh +... + Ekhk E aW[[hll 
be responsible for the equivalence. Consider the star product F, equivalent to 
F, defined by 

%;Y) = E-kc +y)J’(x;~)E(x)E(y). 

Let S and 3 be elements defined in lemma 32. We then have 

F/ = Fi (i = 1,2 ,... ,k), (a) 

Sk+1 (x;Y) -Sk+, (X;y) = Bk+l @.I,. . . ,gk;&,. . . ,Sk;E,, . . . ,Ek) (X;y) , 

(b) 

where 

Bk+l(“‘)(x;y) = c ~t(X)~j(Y)Sr(X;y)EI(x)Et(y), 

i+ j+r+l+t=k+ 1 
Osi,j,r,l,l<k 
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%+I (KY) - &+I (x;Y) = A/c+1 (FI,.. . , Fk; F; ,... , F;;E ,,... ,Ek), (c) 

where Ak+ I (..a ) is defined in lemma 34. 

ProoJ: 
(a) Equivalence between F and F’ and between F and F means (i = 

1,2,... ,k) 

F/-fi + Gi(J’l,... yFi-l;F/,... ,F/-,;El,... ,Ei-1 = dEi , 

Fi-fi + Gi(Fl,... ,Fi-l;F;l,... ,Ti-l;El,... ,Ei-1) = dEi . 

Then, if i = 1, 

hence 

If i = 2, 

F,‘- FI = dE,, F, - F, = dEl ; 

F; = F,. 

F; - F2 + Gz(JkF,‘;E,) = dE2, 

F2 - F2 + Gz(Fl;F;;E,) = dE2. 

Hence 
F; = 5. 

Similarly one deduces 
FL = &. 

(b) We obtain this expression from (ii), (iii) in lemma 32, given that 
Ei=O,i>k+l. 

(c) This expression is the same as in lemma 34, relative to the star products 
F, F, which (being equivalent) are equivalent to order (k + 1). Hence 
h/c+1 = 0, from proposition 3 1, and we can replace Fi by F/ (i = 1,. . . , k), 
from (a). Cl 

Theorem 36. With notations as above, 

Ak+l(Fl,... ,Fk;F,‘,... ,F$E I,... ,Ek) 

= &+, (81,. . . ,&;&,. . . ,&;E,,. . . ,&). 

ProojI By (b) and (c) of lemma 35. 

Lemma 37. Given the Lie algebra g - gI(n; R), let 

P: gl(n;lK!) - End@“) 
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be the natural representation (identity), and (also!) let 

P: 2l(gI(n;R)) - End(W) 

be the induced representation of its enveloping algebra. We have 
(a) If X E gt(n; W), then dX = 0. 
(b) ZfY E ‘B(gl(n;[W)), there exists E E 2l(gI(n;lW)) such that PE = 0 and 

dY = dE. 

Proof. 
(a) Obvious. True even if X E g@“. 
(b) PY E gI(n;[W) 3 dPY = 0 and 

dY = dY - d(PY) = d(Y -PY) = dE, 

where E = Y-PYbutPE=PY-P(PY)=PY-PY=O. 0 

Lemma 38. In theorem 36, assume g = gI (n; W) and take Ei such that PEi = 0, 
allowed by lemma 37. We have 

(PcaP)Ak+,(F ,,... ,Fk;F,’ ,... ,F/;E ,,... ,Ek) = 0. 

Proof: From theorem 36, it suffices to prove 

(P@P)Bk+,@ ,,... ,&;F; ,... ,F,‘;E ,,... ,Ek) = 0. 

But this is true in view of the remark following lemma 32 and the choice of 
Ei, PEi = 0. 0 

11. Proof of part 2 in theorem 1 

We are now ready to prove the following theorem (part 2 in theorem 1). 

Theorem 39. Let F be the star product constructed in theorem 23. Let F’ be 
another star product satisfying the hypothesis of that theorem, i.e., S’ (x; y) = 
(F/)-l (y;x) F (x; y) satisfies 

(P@Pp)S’(x;y) = R. 

Then there exists 
E = 1 +eE,h’, 

i=l 

where Ei E a(gt (n;U4)) and PEi = 0, such that 

F’(x;y) = E-‘lx + y) F(x;y) E(x) E(y). 
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ProojI From (3) of lemma 24, we have 

Sl b;y) = Fl (x;y) - F, (y;x) ) 
s; kY) = Fp;y) - qty;x1. 

In theorem 23, we had 
Fl (KY) = $4 (x2); 

but dF,’ (x; y ) = 0, hence 

F,‘(--GY) = 4s; b;y) + dEl (x;y), 

where Si (x;y) E gI(n;lR)02. By the hypothesis of the theorem on S’(x;y), 

(P @ Ph.% (x;v) = SI (x;y) = rl = Si (x;y) = (P@ P)Si (x;y). 

Hence 
S1 (x;y) = t-1 = S{ (x;y). 

From this we obtain 

F,‘kY) = fi(x;y) +fi1(x;y), 

where we have chosen El (x) such that PEi (x) = 0, in accord with lemma 
37. The star products F and F’ are thus equivalent to order 1 (of course!). 

We now proceed by induction. Suppose F and F’ are equivalent to the 
order k, and we have chosen PEi = 0 (i = 1,. . . , k ). In consequence we have 

F’ k+l - Fk+l + Gk+l = hk+l + Gk+l> 

where hk+i E r\‘(gl(n;R)) and PEk+t = 0. At this point, we allow for lemma 
34. Thus 

s’ k+l -Sk+, = 2hk+l + Ak+,(Fl,... ,Fk;F; ,... ,F,‘;E ,,... ,Ek). 

But 
(P’%pP)Ak+, = 0 

from lemma 38, and by hypothesis 

(P@P)$+,(X;y) = (p@PP)sk+1(x;Y) = rk+l. 

Hence hk+ r = 0. By definition F and F’ are equivalent to order k + 1 (propo- 
sition 30), with PEk+r = 0. The proof of the theorem is now complete. 0 

We would like to thank Professors M. Flato, A. Lichnerowicz and D. Stem- 
heimer for interesting discussions on star products and quantum groups; also 
for friendly encouragement. 
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